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xx

From Linus Pauling’s 1954 Nobel Prize for research on the chemical bond, to Dorothy 
Crowfoot Hodgkin’s in 1964 for solving the structure of vitamin B12 and other biochemical 
substances, to Robert Lefkowitz and Brian Kobilka’s in 2012 for solving the structure of 
G protein-coupled receptors, chemists of all persuasions have shared a common interest 
in the structure of molecules. It is this common interest in structure that has guided the 
shaping of this edition. Its most significant change is the relocation of chirality, previously 
a Chapter 7 topic, to Chapter 4 where it now is closer to the other fundamental structural 
concepts such as molecular shape, constitution, and conformation. A broader background 
in structure, acquired earlier in this new presentation, is designed to provide students the 
conceptual tools they need to understand and apply the relationship between the structures 
of organic compounds and their properties.

Mechanism
The text is organized according to functional groups—structural 
units within a molecule that are most closely identified with char-
acteristic properties. Reaction mechanisms are emphasized early 
and often in an effort to develop the student’s ability to see simi-
larities in reactivity across the diverse range of functional groups 
encountered in organic chemistry. Mechanisms are developed from 
observations; thus, reactions are normally presented first, followed 
by their mechanism.

In order to maintain consistency with what our students have 
already learned, this text presents multistep mechanisms in the 
same way as most general chemistry textbooks; that is, as a series of 
elementary steps. Additionally, we provide a brief comment about 
how each step contributes to the overall mechanism. Section 1.11 
“Curved Arrows, Arrow Pushing, and Chemical Reactions” pro-
vides the student with an early introduction to the notational system 
employed in all of the mechanistic discussions in the text.

Numerous reaction mechanisms are accompanied by potential 
energy diagrams. Section 5.8 “Reaction of Alcohols with Hydrogen 
Halides: The SN1 Mechanism” shows how the potential energy dia-
grams for three elementary steps are combined to give the diagram 
for the overall reaction.

Mechanism 5.1

Formation of tert-Butyl Chloride from tert-Butyl Alcohol and Hydrogen Chloride

THE OVERALL REACTION:

H2OO

H
+ HCl Cl +

tert-Butyl alcohol Hydrogen chloride tert-Butyl chloride Water

THE MECHANISM:

Step 1: Protonation of tert-butyl alcohol to give an alkyloxonium ion:

ClO

H
+ H Cl

fast
O

H

H

+

tert-Butyl alcohol Hydrogen chloride tert-Butyloxonium ion Chloride ion

Step 2: Dissociation of tert-butyloxonium ion to give a carbocation:

O

tert-Butyl cation

+

tert-Butyloxonium ion Water

O

H

H

H

H

slow

Step 3: Capture of tert-butyl cation by chloride ion:

Cl
fast

tert-Butyl cation

+

tert-Butyl chlorideChloride ion

Cl

Each equation in Mechanism 5.1 represents a single elementary step, meaning that 
it involves only one transition state. A particular reaction might proceed by way of a single 
elementary step, in which it is described as a concerted reaction, or by a series of elemen-
tary steps as in Mechanism 5.1. To be valid a proposed mechanism must meet a number of 
criteria, one of which is that the sum of the equations for the elementary steps must cor-
respond to the equation for the overall reaction. Before we examine each step in detail, you 
should verify that the process in Mechanism 5.1 satisfies this requirement.

Step 1: Proton Transfer

We saw in Chapter 1, especially in Table 1.8, that alcohols resemble water in respect to their 
Brønsted acidity (ability to donate a proton from oxygen). They also resemble water in their 
Brønsted basicity (ability to accept a proton on oxygen). Just as proton transfer to a water 
molecule gives oxonium ion (hydronium ion, H3O+), proton transfer to an alcohol gives an 
alkyloxonium ion (ROH2

+).

 

ClO

H
+ H Cl

fast
O

H

H

+

tert-Butyl
alcohol

(Brønsted base)

Hydrogen
chloride

(Brønsted acid)

tert-Butyloxonium
ion

(Conjugate acid)

Chloride
ion

(Conjugate base) 

Recall from Section 1.11 that curved 
arrows indicate the movement of 
electrons in chemical reactions.

180 Chapter 5 Alcohols and Alkyl Halides: Introduction to Reaction Mechanisms

Preface

A great advantage of X-ray analysis as a method of chemical structure 
analysis is its power to show some totally unexpected and surprising 
structure with, at the same time, complete certainty.

Overview
The power of X-ray crystallographic analysis was cited in Dorothy Crowfoot Hodgkin’s 
1964 Chemistry Nobel Prize Lecture:
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H

O

H

H

+ +

+

O

H

H

Cl

Cl

Cl

Cl

H2O

Cl

H2O

H2O Cl

Enhanced Graphics
The teaching of organic chemistry has especially benefited as powerful modeling and 
graphics software has become routinely available. Computer-generated molecular models 
and electrostatic potential maps were integrated into the third edition of this text and their 
number has increased in succeeding editions; also seeing increasing use are molecular 
orbital theory and the role of orbital interactions in chemical reactivity.

Coverage of Biochemical Topics
From its earliest editions, four chapters have been 
included on biochemical topics and updated to 
cover topics of recent interest.
▸	 Chapter 24 Carbohydrates
▸	 Chapter 25 Lipids
▸	 Chapter 26 Amino Acids, Peptides, and 

Proteins
▸	 Chapter 27 Nucleosides, Nucleotides, and 

Nucleic Acids

Figure 26.16  

Barrel-shaped green fluorescent 
protein (GFP) has an outer β-sheet 
structure and an α helix in the inner 
region.

	 Preface� xxi
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Generous and Effective Use of Tables
Annotated summary tables have been a staple of Organic Chemistry since the first edition. 
Some tables review reactions from earlier chapters, others the reactions or concepts of a 
current chapter. Still other tables walk the reader step-by-step through skill builders and 
concepts unique to organic chemistry. Well received by students and faculty alike, these 
summary tables remain one of the text’s strengths.

Problems
▸	 Problem-solving strategies and skills are empha-

sized throughout. Understanding is progressively 
reinforced by problems that appear within topic 
sections.

▸	 For many problems, sample solutions are given, 
including examples of handwritten solutions from 
the authors.

▸	 The text contains more than 1400 problems, many 
of which contain multiple parts. End-of-chapter 
problems are now organized to conform to the pri-
mary topic areas of each chapter.

Pedagogy
▸	� A list of tables, mechanisms, boxed features, and 

Descriptive Passages and Interpretive Questions is 
included in the front matter as a quick reference to 
these important learning tools in each chapter.

▸	� Each chapter begins with an opener that is meant 
to capture the reader’s attention. Chemistry that is 
highlighted in the opener is relevant to chemistry 
that is included in the chapter.

 TABLE 24.2 Familiar Reaction Types of Carbohydrates

Reaction and comments Example

1.  Reduction: Carbonyl 
groups in carbohydrates 
are reduced by the 
same methods used for 
aldehydes and ketones: 
reduction with sodium 
borohydride or lithium 
aluminum hydride or by 
catalytic hydrogenation.

 

HO
O

OH

OH

OH

OH

HO
OH

OH

OH

OH

OH

D-Galactose D-Galactitol (90%)

NaBH4

H2O

 

2.  Cyanohydrin formation: 
Reaction of an aldose 
with HCN gives a mixture 
of two diastereomeric 
cyanohydrins.

 

HO O

OH

OH

OH

HCN
HO CN

OH

OH

OH

HO CN

OH

OH

OH

OH OH

L-Arabinose L-Mannonitrile L-Glucononitrile  

3.  Acylation: All available 
hydroxyl groups of 
carbohydrates are capable 
of undergoing acylation to 
form esters.

 

AcOHO

CH3C
OHO

HO
HOOH

 5Ac2O
OAcO

AcO
AcO OAc

pyridine

α-D-Glucopyranose   Acetic 
anhydride

1,2,3,4,6-Penta-O-acetyl-
D-glucopyranose (88%)

O

Ac =+

 

4.  Alkylation: Carbohydrate 
hydroxyl groups react with 
alkyl halides, especially 
methyl and benzyl halides, 
to give ethers.

 

C6H5CH2OHO
OHO

HO
HO OCH3

4C6H5CH2Cl
OC6H5CH2O

C6H5CH2O
C6H5CH2OOCH3

Methyl 
α-D-glucopyranoside

Benzyl
chloride

Methyl 2,3,4,6-tetra-O-benzyl-
α-D-glucopyranoside (95%)

+ KOH
dioxane

 

5.  Acetal formation: 
Carbohydrates can serve 
as the diol component 
in the formation of cyclic 
acetals on reaction with 
aldehydes and ketones in 
the presence of an acid 
catalyst. In the example 
shown, the catalyst is a 
Lewis acid.

 

HO
OHO

HO
HO

OCH3

OO
O

HO
HO

OCH3

ZnCl2
C6H5

Methyl -D-
glucopyranoside

Methyl 4,6-O-benzylidene-
-D-glucopyranoside (63%)

Benzaldehyde

C6H5CH O+

 

6.  Pyranose–furanose 
isomerization: The 
furanose and pyranose 
forms of a carbohydrate 
are cyclic hemiacetals and 
equilibrate by way of their 
open-chain isomer.  

O

HO HO OH

HO OH

HO HO
O

HO O

OHHO

OH
HO

D-Ribofuranose 
(α and/or β)

H

D-Ribopyranose 
(α and/or β)

D-Ribose
 

7.  Enolization: Enolization 
of the open-chain form of 
a carbohydrate gives an 
enediol. Carbohydrates 
that are epimeric at C-2 
give the same enediol.

 

D-Glucose or 
D-mannose

D-Gluco- or 
D-mannopyranose 

(α and/or β)

OH
HO

HO
OH

H
Enediol

HO

HO

O
HO

HO
HO

OH OH

OH
HO

HO

HO

O

H

HO
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10.27 Photochemical chlorination of 2,2,4-trimethylpentane gives four isomeric monochlorides.
(a) Write structural formulas for these four isomers.
(b) The two primary chlorides make up 65% of the monochloride fraction. Assuming that 

all the primary hydrogens in 2,2,4-trimethylpentane are equally reactive, estimate the 
percentage of each of the two primary chlorides in the product mixture.

10.28 Photochemical chlorination of pentane gave a mixture of three constitutionally isomeric 
monochlorides. The principal monochloride constituted 46% of the total, and the remaining 
54% was approximately a 1:1 mixture of the other two isomers. Write structural formulas 
for the three monochloride isomers and specify which one was formed in greatest amount. 
(Recall that a secondary hydrogen is abstracted three times faster by a chlorine atom than a 
primary hydrogen.)

Synthesis
10.29 Outline a synthesis of each of the following compounds from isopropyl alcohol. A 

compound prepared in one part can be used as a reactant in another. (Hint: Which of the 
compounds shown can serve as a starting material to all the others?)

 
H

Br

N

(a) (b) (c)

(d) (e) (f)  

10.30 Guiding your reasoning by retrosynthetic analysis, show how you could prepare each of 
the following compounds from the given starting material and any necessary organic or 
inorganic reagents. All require more than one synthetic step.
(a) Cyclopentyl iodide from cyclopentane
(b) 1-Bromo-2-methylpropane from 2-bromo-2-methylpropane
(c) meso-2,3-Dibromobutane from 2-butyne
(d) 1-Heptene from 1-bromopentane
(e) cis-2-Hexene from 1,2-dibromopentane
(f) Butyl methyl ether (CH3CH2CH2CH2OCH3) from 1-butene

(g)

   

from(g)

 

10.31 (Z)-9-Tricosene [(Z)-CH3(CH2)7CH  CH(CH2)12CH3] is the sex pheromone of the female 
housefly. Synthetic (Z)-9-tricosene is used as bait to lure male flies to traps that contain 
insecticide. Using acetylene and alcohols of your choice as starting materials, along with 
any necessary inorganic reagents, show how you could prepare (Z)-9-tricosene.

Mechanism
10.32 Suggest a reasonable mechanism for the following reaction. Use curved arrows to show 

electron flow.

 + HBr
ROOR

Br
 

10.33 Cyclopropyl chloride has been prepared by the free-radical chlorination of cyclopropane. 
Write a stepwise mechanism for this reaction.

372 Chapter 10 Introduction to Free Radicals  

The product of a Diels–Alder reaction always contains one more ring than the 
reactants. Maleic anhydride already contains one ring, so the product of its addition to 
2-methyl-1,3-butadiene has two.

 
Maleic

anhydride
1-Methylcyclohexene-4,5-

dicarboxylic anhydride (100%)

via

2-Methyl-1,3-
butadiene

+
benzene

100°C
O

O

O

O

O

OH

H

O

O

O

 

Problem 11.18

Dicarbonyl compounds such as quinones are reactive dienophiles.

 (a) 1,4-Benzoquinone reacts with 
2-chloro-1,3-butadiene to give a 
single product C10H9ClO2 in 95% 
yield. Write a structural formula for 
this product.

 (b) 2-Cyano-1,4-benzoquinone 
undergoes a Diels–Alder reaction 
with 1,3-butadiene to give a single 
product C11H9NO2 in 84% yield. 
What is its structure?

 

O

O

1,4-Benzoquinone

O

O

2-Cyano-1,4-benzoquinone

CN

 

Sample Solution

(a)    

 

Conformational Effects on the Reactivity of the Diene The diene must be able to 
adopt the s-cis conformation in order for cycloaddition to occur. We saw in Section 11.7 
that the s-cis conformation of 1,3-butadiene is 12 kJ/mol (2.8 kcal/mol) less stable than 
the s-trans form. This is a relatively small energy difference, so 1,3-butadiene is reactive 
in the Diels–Alder reaction. Dienes that cannot readily adopt the s-cis conformation are 
less reactive. For example, 4-methyl-1,3-pentadiene is a thousand times less reactive in the 

398 Chapter 11 Conjugation in Alkadienes and Allylic Systems
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The Apollo lunar module is powered by a liquid fuel containing a mixture of substances, 
each with its own ignition characteristics and energy properties. One of the fuels is called 
UDMH, which stands for “unsymmetrical dimethylhydrazine.” Its chemical name is 
N,N-dimethylhydrazine.
▸	 End-of-Chapter Summaries highlight and consolidate all of the important concepts and 

reactions within a chapter.

Opener for Chapter 1

N NH2

H3C

H3C

 TABLE 8.2 Addition Reactions of Alkenes

Reaction (section) and Comments General Equation and Specific Example

Catalytic hydrogenation (Sections 8.1–8.3) 
Alkenes react with hydrogen in the presence of a 
platinum, palladium, rhodium, or nickel catalyst to 
form the corresponding alkane. Both hydrogens 
add to the same face of the double bond (syn 
addition). Heats of hydrogenation can be used to 
compare the relative stability of various double-
bond types.

  

  

Addition of hydrogen halides (Sections 8.4–8.5) 
A proton and a halogen add to the double bond 
of an alkene to yield an alkyl halide. Addition 
proceeds in accordance with Markovnikov’s rule: 
hydrogen adds to the carbon that has the greater 
number of hydrogens, halide to the carbon that 
has the fewer hydrogens. The regioselectivity 
is controlled by the relative stability of the two 
possible carbocation intermediates. Because the 
reaction involves carbocations, rearrangement is 
possible.

 

� �

 

  

Acid-catalyzed hydration (Section 8.6) Addition 
of water to the double bond of an alkene takes 
place according to Markovnikov’s rule in aqueous 
acid. A carbocation is an intermediate and is 
captured by a molecule of water acting as a 
nucleophile. Rearrangements are possible.

 

� �

 

  

Hydroboration–oxidation (Sections 8.8–8.9) 
This two-step sequence converts alkenes to 
alcohols with a regioselectivity opposite to 
Markovnikov’s rule. Addition of H and OH is 
stereospecific and syn. The reaction involves 
electrophilic addition of a boron hydride to 
the double bond, followed by oxidation of the 
intermediate organoborane with hydrogen 
peroxides. Carbocations are not intermediates and 
rearrangements do not occur.

 

� �

 

  

Addition of Halogens (Section 8.10) Reactions 
with Br2 or Cl2 are the most common and yield 
vicinal dihalides except when the reaction is 
carried out in water. In water, the product is a 
vicinal halohydrin. The reactions involve a cyclic 
halonium ion intermediate and are stereospecific 
(anti addition). Halohydrin formation is 
regiospecific; the halogen bonds to the carbon of 
C  C that has the greater number of hydrogens.

 

� �

 

 
Alkene Halogen Vicinal 

halohydrin

+ X2RCH CR�2

Water

+ H2O + HX

Hydrogen 
halide

RCH CR�2

X OH
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Audience
Organic Chemistry is designed to meet the needs of the “mainstream,” two-semester 
undergraduate organic chemistry course. From the beginning and with each new edition, 
we have remained grounded in some fundamental notions. These include important issues 
concerning the intended audience. Is the topic appropriate for them with respect to their 
interests, aspirations, and experience? Just as important is the need to present an accurate 
picture of the present state of organic chemistry. How do we know what we know? What 
makes organic chemistry worth knowing? Where are we now? Where are we headed?

Descriptive Passages and Interpretive Problems
Many organic chemistry students later take stand-
ardized pre-professional examinations composed of 
problems derived from a descriptive passage; this 
text includes comparable passages and problems to 
familiarize students with this testing style.

Thus, every chapter concludes with a self-
contained Descriptive Passage and Interpretive 
Problems unit that complements the chapter’s con-
tent while emulating the “MCAT style.” These 28  
passages—listed on page xix—are accompanied by 
more than 100 total multiple-choice problems.

The passages focus on a wide range of topics—
from structure, synthesis, mechanism, and natural 

products. They provide instructors with numerous opportunities to customize their own 
organic chemistry course, while giving students practice in combining new information 
with what they have already learned.

What’s New
▸	 Chirality has been moved from its place as Chapter 7 in previous editions to Chapter 4 

here and required major changes in this chapter and in the chapters on nucleophilic 
substitution and alkenes as well. For example, electrophilic additions to alkenes are 
not revisited to cover their stereochemical aspects. These additions now appear in the 
appropriate alkene chapter along with their mechanism and stereochemical details. An 
example is the addition of HB to 1-butene.

(R)-2-Bromobutane

(S)-2-Bromobutane

sec-Butyl cation

Br

Br

50%

50%

Spiraling through topics is reduced with the earlier placement of chirality and chapter 
reorganization, allowing some topics to be explained in greater detail. Stereoelectronic 
effects in E2 eliminations, for example, are now presented as another example of a stereo-
specific process.

Epoxide Rearrangements and the NIH Shift
This passage is about two seemingly unrelated aspects of epoxides:

 1. epoxide rearrangements
 2. arene oxides

These two topics merge in an important biological transformation in which neither the reactant nor 
the product is an epoxide—the conversion of the amino acid phenylalanine to tyrosine.

�NH3

CO2
�

�NH3

CO2
�

HO
O2, phenylalanine hydroxylase

coenzymes

Phenylalanine Tyrosine  

Epoxide rearrangements
In some epoxide ring-opening reactions C  O bond cleavage is accompanied by the development of 
enough carbocation character at carbon (δ+C  O) to allow rearrangement to occur. These reactions 
are typically promoted by protonation of the epoxide oxygen or by its coordination to Lewis acids 
such as boron trifluoride (BF3) and aluminum chloride (AlCl3).

O
�

H O
� �

BF3 O
� �

AlCl3 
As positive charge develops on the ring carbon, one of the groups on the adjacent carbon migrates to 
it. This migration is assisted by electron-pair donation from oxygen. It is likely that all of this occurs 
in the same transition state. Subsequent deprotonation gives an aldehyde or ketone as the isolated 
product.

O�
H O�

H

R

O

R

R

�H�

 
Overall, the reaction resembles the pinacol rearrangement of vicinal diols (see the Chapter 16 
Descriptive Passage and Interpretive Problems) and takes place under similar conditions.

 

H2SO4 H2O�C

R

O

R C

R

R or C

R

OH

R

R C R

OH

C

O

R

R C R

R

 

Arene Oxides
Aromatic rings are normally inert to the customary reagents that convert alkenes to epoxides, but 
arene oxides have been synthesized in the laboratory, often by indirect methods. Their chemical 
reactivity resembles that of other epoxides.

H

H

H

H

H

H

O
1,2-Epoxycyclohexa-3,5-diene is formally the
epoxide of benzene and is the parent of the
class of compounds known as arene oxides. 

 

The most striking thing about arene oxides is their involvement in biological processes. Enzymes in 
the liver oxidize aromatic hydrocarbons to arene oxides, which then react with biological nucleo-
philes to give compounds used in subsequent reactions or to aid elimination of the arene oxide from 
the body. Some arene oxides, especially those from polycyclic aromatic hydrocarbons, are carcino-
genic and react with nitrogen nucleophiles of DNA to induce mutations (Section 12.6).

Descriptive Passage and Interpretive Problems 17

688 Chapter 17 Ethers, Epoxides, and Sulfides
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▸	 Nucleophilic substitution, previously Chapters 4 and 8, is now covered back-to-back 
in Chapters 5 and 6. This change makes for a tighter presentation in the early part of 
the book where mechanisms are first introduced.

▸	 A new chapter on the chemistry of free radicals, Chapter 10 has been added. This 
change improves topic flow in the first chapter on nucleophilic substitution and allows 
a more unified approach to free-radical chemistry.

▸	 A new Descriptive Passage and Interpretive Problems “Free-Radical Reduction of 
Alkyl Halides” has been added to the new chapter on free radicals. Likewise, a new 
Descriptive Passage “1,3-Dipolar Cycloaddition” has been added to Chapter 11.

▸	 The revision of structural drawings to bond-line format, begun in previous 
editions, continues. These drawings not only reflect common usage in organic 
chemistry as it is practiced and taught, but also foster a closer connection between 
what the student reads in the text, what the instructor presents in the class, what 
is used throughout the electronic resources in Connect and SmartBook, and what 
appears on examinations.

▸	 All end-of-chapter problems are now grouped according to topic. This should allow 
students to identify and focus more readily on specific areas where they need more 
practice.

▸	 Several new chapter openers have been created for this edition.

	 Preface� xxv
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Instructor Resources
Presentation Tools
Accessed from the Instructor Resources in the Connect Library, Presentation Tools con-
tains photos, artwork, and Lecture PowerPoints that can be used to create customized lec-
tures, visually enhanced tests and quizzes, compelling course websites, or attractive printed 
support materials. All assets are copyrighted by McGraw-Hill Higher Education, but can be 
used by instructors for classroom purposes. The visual resources in this collection include:

∙	 Art  Full-color digital files of all illustrations in the book can be readily incorporated 
into lecture presentations, exams, or custom-made classroom materials. In addition, all 
files are pre-inserted into PowerPoint slides for ease of lecture preparation.

∙	 Photos  The photo collection contains digital files of photographs from the text, 
which can be reproduced for multiple classroom uses.

∙	 PowerPoint® Lecture Outlines  Ready-made presentations that combine art and 
lecture notes are provided for each chapter of the text.

Also accessed through your textbook’s Instructor Resources in the Connect Library are:
∙	 Classroom Response System Questions  bring interactivity into the classroom or 

lecture hall. These wireless response systems, which are essentially remotes that are 
easy to use and engage students, give the instructor and students immediate feedback 
from the entire class. Wireless response systems allow instructors to motivate student 
preparation, interactivity, and active learning. Nearly 600 questions covering the con-
tent of the Organic Chemistry text are available on the Organic Chemistry site for use 
with any classroom response system.

∙	 Animations cover the most important mechanisms for Organic Chemistry are 
provided.

Test Bank
A test bank with over 1300 questions is available with the tenth edition. The Test Bank is 
available as both Word and PDF files and is assignable through Connect to quickly create 
customized exams.

Student Resources
Solutions Manual
The Student Solutions Manual provides step-by-step solutions guiding the student through 
the reasoning behind each problem in the text. There is also a self-test section at the end 
of each chapter that is designed to assess the student’s mastery of the material.

Schaum’s Outline of Organic Chemistry
This helpful study aid provides students with hundreds of solved and supplementary 
problems for the organic chemistry course.
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Structure Determines 
Properties

Structure*  is the key to everything in chemistry. The properties 
of a substance depend on the atoms it contains and the way 

these atoms are connected. What is less obvious, but very power-
ful, is the idea that someone who is trained in chemistry can look 
at the structural formula of a substance and tell you a lot about its 
properties. This chapter begins your training toward understand-
ing the relationship between structure and properties in organic 
compounds. It reviews some fundamental principles of the Lewis 
approach to molecular structure and bonding. By applying these 
principles, you will learn to recognize structural patterns that are 
more stable than others and develop skills in communicating 
structural information that will be used throughout your study of 
organic chemistry. A key relationship between structure and 
properties will be introduced by examining the fundamentals of 
acid–base chemistry from a structural perspective.

1.1  Atoms, Electrons, and Orbitals

Before discussing structure and bonding in molecules, let’s first 
review some fundamentals of atomic structure. Each element is 
characterized by a unique atomic number Z, which is equal to 

The Apollo lunar module is powered by a liquid fuel containing a mixture  
of substances, each with its own ignition characteristics and energy  
properties. One of the fuels is called UDMH, which stands for “unsymmetrical  
dimethylhydrazine.” Its formula is (CH3)2NHNH2 and its chemical name is 
N,N-dimethylhydrazine.

1

*A glossary of the terms shown in boldface may be found immediately before 
the index at the back of the book.
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the number of protons in its nucleus. A neutral atom has equal numbers of protons, which 
are positively charged, and electrons, which are negatively charged.

Electrons were believed to be particles from the time of their discovery in 1897 
until 1924, when the French physicist Louis de Broglie suggested that they have wavelike 
properties as well. Two years later Erwin Schrödinger took the next step and calculated the 
energy of an electron in a hydrogen atom by using equations that treated the electron as if 
it were a wave. Instead of a single energy, Schrödinger obtained a series of energies, each 
of which corresponded to a different mathematical description of the electron wave. These 
mathematical descriptions are called wave functions and are symbolized by the Greek 
letter ψ (psi).

Eighteenth-century chemists regarded their science as being 
composed of two branches. One dealt with substances 

obtained from natural or living sources and was called organic 
chemistry; the other dealt with materials from nonliving matter—
minerals and the like—and was called inorganic chemistry. Over 
time, combustion analysis established that the compounds 
derived from natural sources contained carbon, and a new defi-
nition of organic chemistry emerged: Organic chemistry is the 
study of carbon compounds. This is the definition we still use 
today.

As the eighteenth century gave way to the nineteenth, 
many scientists still subscribed to a doctrine known as vitalism, 
which held that living systems possessed a “vital force” that was 
absent in nonliving systems. Substances derived from natural 
sources (organic) were thought to be fundamentally different 
from inorganic ones. It was believed that inorganic compounds 
could be synthesized in the laboratory, but organic compounds 
could not—at least not from inorganic materials.

In 1823, Friedrich Wöhler, after completing medical studies 
in Germany, spent a year in Stockholm studying under one of 
the world’s foremost chemists of the time, Jöns Jacob Berzelius. 
Wöhler subsequently went on to have a distinguished indepen-
dent career, spending most of it at the University of Göttingen. 
He is best remembered for a brief paper he published in 1828 
in which he noted that, on evaporating an aqueous solution of 
ammonium cyanate, he obtained “colorless, clear crystals often 
more than an inch long,” which were not ammonium cyanate but 
were instead urea.

NH4OCN O C(NH2)2

Ammonium cyanate
(inorganic)

Urea
(organic)

This transformation was remarkable at the time because 
an inorganic salt, ammonium cyanate, was converted to urea, 
a known organic substance earlier isolated from urine. It is 
now recognized as a significant early step toward overturning 
the philosophy of vitalism. Although Wöhler himself made no 
extravagant claims concerning the relationship of his discovery 
to vitalist theory, the die was cast, and over the next generation 
organic chemistry outgrew vitalism. What particularly seemed 
to excite Wöhler and Berzelius had very little to do with vitalism. 
Berzelius was interested in cases in which two clearly different 
materials had the same elemental composition, and he invented 

the word isomers to apply to them. Wöhler’s observation that an 
inorganic compound (ammonium cyanate) of molecular formula 
CH4N2O could be transformed into an organic compound (urea) 
of the same molecular formula had an important bearing on the 
concept of isomerism.

From the concept of isomerism we can trace the origins 
of the structural theory—the idea that a specific arrangement 
of atoms uniquely defines a substance. Ammonium cyanate 
and urea are different compounds because they have different 
structures.

Three mid-nineteenth-century scientists, August Kekulé, 
Archibald S. Couper, and Alexander M. Butlerov, stand out for 
separately proposing the elements of the structural theory. The 
essential features of Kekulé’s theory, developed and presented 
while he taught at Heidelberg in 1858, were that carbon normally 
formed four bonds and had the capacity to bond to other car-
bons so as to form long chains. Isomers were possible because 
the same elemental composition (say, the CH4N2O molecular 
formula common to both ammonium cyanate and urea) accom-
modates more than one pattern of atoms and bonds. Shortly 
thereafter, Couper, a Scot working at the École de Médecine in 
Paris, and Butlerov, a Russian chemist at the University of Kazan, 
proposed similar theories.

In the late nineteenth and early twentieth centuries, 
major discoveries about atoms and electrons placed theories 
of molecular structure and bonding on a more secure, physics-
based foundation. Several of these are described at the begin-
ning of this section.

Organic Chemistry: The Early Days

	 1.1  Atoms, Electrons, and Orbitals� 3
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According to the Heisenberg uncertainty principle, we can’t tell exactly where an 
electron is, but we can tell where it is most likely to be. The probability of finding an elec-
tron at a particular spot relative to an atom’s nucleus is given by the square of the wave func-
tion (ψ2) at that point. Figure 1.1 illustrates the probability of finding an electron at various 
points in the lowest energy (most stable) state of a hydrogen atom. The darker the color in 
a region, the higher the probability. The probability of finding an electron at a particular 
point is greatest near the nucleus and decreases with increasing distance from the nucleus 
but never becomes zero.

Wave functions are also called orbitals. For convenience, chemists use the term 
“orbital” in several different ways. A drawing such as Figure 1.1 is often said to represent 
an orbital. We will see other kinds of drawings in this chapter, and use the word “orbital” 
to describe them too.

Orbitals are described by specifying their size, shape, and directional properties. 
Spherically symmetrical ones such as shown in Figure 1.1 are called s orbitals. The letter 
s is preceded by the principal quantum number n (n = 1, 2, 3, etc.), which specifies the 
shell and is related to the energy of the orbital. An electron in a 1s orbital is likely to be 
found closer to the nucleus, is lower in energy, and is more strongly held than an electron 
in a 2s orbital.

Instead of probability distributions, it is more common to represent orbitals by their 
boundary surfaces, as shown in Figure 1.2 for the 1s and 2s orbitals. The region enclosed 
by a boundary surface is arbitrary but is customarily the volume where the probability of 
finding an electron is high—on the order of 90–95%. Like the probability distribution plot 
from which it is derived, a picture of a boundary surface is usually described as a drawing 
of an orbital.

A hydrogen atom (Z = 1) has one electron; a helium atom (Z = 2) has two. The single 
electron of hydrogen occupies a 1s orbital, as do the two electrons of helium. We write their 
electron configurations as

Hydrogen: 1s1  Helium: 1s2

In addition to being negatively charged, electrons possess the property of spin. The 
spin quantum number of an electron can have a value of either +​​ 1 _ 2 ​​ or – ​​ 1 _ 2 ​​. According to the 
Pauli exclusion principle, two electrons may occupy the same orbital only when they have 
opposite, or “paired,” spins. For this reason, no orbital can contain more than two electrons. 
Because two electrons fill the 1s orbital, the third electron in lithium (Z = 3) must occupy 
an orbital of higher energy. After 1s, the next higher energy orbital is 2s. The third electron 
in lithium therefore occupies the 2s orbital, and the electron configuration of lithium is

Lithium: 1s22s1

The period (or row) of the periodic table in which an element appears corresponds to the 
principal quantum number of the highest numbered occupied orbital (n = 1 in the case of 
hydrogen and helium). Hydrogen and helium are first-row elements; lithium (n = 2) is a 
second-row element.

With beryllium (Z = 4), the 2s level becomes filled and, beginning with boron (Z = 5), 
the next orbitals to be occupied are 2px, 2py , and 2pz. These three orbitals (Figure 1.3) are 
of equal energy and are characterized by boundary surfaces that are usually described as 

x

z

y

Figure 1.1

Probability distribution (ψ2) for an 
electron in a 1s orbital.

Figure 1.2

Boundary surfaces of a 1s orbital and a 
2s orbital.

1s

x

z

y

2s

x

z

y

A complete periodic table of the 
elements is presented at the back of 
the book.
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“dumbell-shaped.” The axes of the three 2p orbitals are at right angles to one another. Each 
orbital consists of two “lobes,” represented in Figure 1.3 by regions of different colors. 
Regions of a single orbital, in this case, each 2p orbital, may be separated by nodal surfaces 
where the wave function changes sign and the probability of finding an electron is zero.

The electron configurations of the first 12 elements, hydrogen through magnesium, 
are given in Table 1.1. In filling the 2p orbitals, notice that each is singly occupied before 
any one is doubly occupied. This general principle for orbitals of equal energy is known 
as Hund’s rule. Of particular importance in Table 1.1 are hydrogen, carbon, nitrogen, 
and oxygen. Countless organic compounds contain nitrogen, oxygen, or both in addition to 
carbon, the essential element of organic chemistry. Most of them also contain hydrogen.

It is often convenient to speak of the valence electrons of an atom. These are 
the outermost electrons, the ones most likely to be involved in chemical bonding and 

Other methods are also used to 
contrast the regions of an orbital 
where the signs of the wave function 
are different. Some mark one lobe of a 
p orbital + and the other −. Others 
shade one lobe and leave the other 
blank. When this level of detail isn’t 
necessary, no differentiation is made 
between the two lobes.

x xx

z

y yy

zz

2px 2pz2py

Figure 1.3

Boundary surfaces of the 2p orbitals. The wave function changes sign at the nucleus. The two halves 
of each orbital are indicated by different colors. The yz-plane is a nodal surface for the 2px orbital. The 
probability of finding a 2px electron in the yz-plane is zero. Analogously, the xz-plane is a nodal surface 
for the 2py orbital, and the xy-plane is a nodal surface for the 2pz orbital.

	 TABLE 1.1	 Electron Configurations of the First Twelve Elements  
of the Periodic Table

Number of electrons in indicated orbital

Element
Atomic 

number Z 1s 2s 2px 2py 2pz 3s

Hydrogen   1 1

Helium   2 2

Lithium   3 2 1

Beryllium   4 2 2

Boron   5 2 2 1

Carbon   6 2 2 1 1

Nitrogen   7 2 2 1 1 1

Oxygen   8 2 2 2 1 1

Fluorine   9 2 2 2 2 1

Neon 10 2 2 2 2 2

Sodium 11 2 2 2 2 2 1

Magnesium 12 2 2 2 2 2 2

	 1.1  Atoms, Electrons, and Orbitals� 5
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reactions. For second-row elements these are the 2s and 2p electrons. Because four orbit-
als (2s, 2px , 2py , 2pz) are involved, the maximum number of electrons in the valence 
shell of any second-row element is 8. Neon, with all its 2s and 2p orbitals doubly occu-
pied, has eight valence electrons and completes the second row of the periodic table. For 
main-group elements, the number of valence electrons is equal to its group number in 
the periodic table.

Problem 1.1

How many electrons does carbon have? How many are valence electrons? What third-row 
element has the same number of valence electrons as carbon?

Once the 2s and 2p orbitals are filled, the next level is the 3s, followed by the 3px , 3py , 
and 3pz orbitals. Electrons in these orbitals are farther from the nucleus than those in the 2s 
and 2p orbitals and are of higher energy.

Problem 1.2

Referring to the periodic table as needed, write electron configurations for all the elements in 
the third period.

Sample Solution  The third period begins with sodium and ends with argon. The atomic 
number Z of sodium is 11, and so a sodium atom has 11 electrons. The maximum number of 
electrons in the 1s, 2s, and 2p orbitals is ten, and so the eleventh electron of sodium occupies  
a 3s orbital. The electron configuration of sodium is 1s22s22px

22py
22pz

23s1.

Neon, in the second period, and argon, in the third, have eight electrons in their 
valence shell; they are said to have a complete octet of electrons. Helium, neon, and argon 
belong to the class of elements known as noble gases or rare gases. The noble gases are 
characterized by an extremely stable “closed-shell” electron configuration and are very 
unreactive.

Structure determines properties and the properties of atoms depend on atomic struc-
ture. All of an element’s protons are in its nucleus, but the element’s electrons are distrib-
uted among orbitals of various energy and distance from the nucleus. More than anything 
else, we look at its electron configuration when we wish to understand how an element 
behaves. The next section illustrates this with a brief review of ionic bonding.

1.2  Ionic Bonds

Atoms combine with one another to give compounds having properties different from the 
atoms they contain. The attractive force between atoms in a compound is a chemical bond. 
One type of chemical bond, called an ionic bond, is the force of attraction between oppo-
sitely charged species (ions) (Figure 1.4). Positively charged ions are referred to as cations; 
negatively charged ions are anions.

Whether an element is the source of the cation or anion in an ionic bond depends 
on several factors, for which the periodic table can serve as a guide. In forming ionic 
compounds, elements at the left of the periodic table typically lose electrons, giving a 
cation that has the same electron configuration as the preceding noble gas. Loss of an 
electron from sodium, for example, yields Na+, which has the same electron configura-
tion as neon.

±£Na(g)

Sodium atom
1s22s22p63s1

[The symbol (g) indicates that the species is present in the gas phase.]

Na�(g)

Sodium ion
1s22s22p6

e�

Electron

�

In-chapter problems that contain 
multiple parts are accompanied by a 
sample solution to part (a).

Detailed solutions to all of the 
problems are found in the Student 
Solutions Manual along with a brief 
discussion and advice on how to do 
problems of the same type.

Figure 1.4

An ionic bond is the force of attraction 
between oppositely charged ions. Each 
Na+ ion in the crystal lattice of solid 
NaCl is involved in ionic bonding to 
each of six surrounding Cl− ions and 
vice versa. The smaller balls are Na+ 
and the larger balls are Cl−.
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Problem 1.3

Species that have the same number of electrons are described as isoelectronic. What +2 ion is 
isoelectronic with Na+? What −2 ion?

A large amount of energy, called the ionization energy, must be transferred to any 
atom to dislodge an electron. The ionization energy of sodium, for example, is 496 kJ/mol 
(119 kcal/mol). Processes that absorb energy are said to be endothermic. Compared with 
other elements, sodium and its relatives in group 1A have relatively low ionization energies. 
In general, ionization energy increases across a row in the periodic table.

Elements at the right of the periodic table tend to gain electrons to reach the electron 
configuration of the next higher noble gas. Adding an electron to chlorine, for example, gives 
the anion Cl−, which has the same closed-shell electron configuration as the noble gas argon.

±£Cl(g)

Chlorine atom
1s22s22p63s23p5

Cl�(g)

Chloride ion
1s22s22p63s23p6

e�

Electron

�

Problem 1.4

Which of the following ions possess a noble gas electron configuration?

	 (a)	 K+	 (c)  H−	 (e)  F−

	 (b)  He+	 (d)  O−	 (f)  Ca2+

Sample Solution  (a) Potassium has atomic number 19, and so a potassium atom has 
19 electrons. The ion K+, therefore, has 18 electrons, the same as the noble gas argon. The 
electron configurations of both K+ and Ar are 1s22s22p63s23p6.

Energy is released when a chlorine atom captures an electron. Energy-releasing reac-
tions are described as exothermic, and the energy change for an exothermic process has a 
negative sign. The energy change for addition of an electron to an atom is referred to as its 
electron affinity and is −349 kJ/mol (−83.4 kcal/mol) for chlorine.

We can use the ionization energy of sodium and the electron affinity of chlorine to 
calculate the energy change for the reaction:

Cl(g)

Chlorine atom

+ Cl–(g)+Na(g) Na+(g)

Sodium atom Chloride ionSodium ion

Were we to simply add the ionization energy of sodium (496 kJ/mol) and the electron affin-
ity of chlorine (−349 kJ/mol), we would conclude that the overall process is endothermic by 
+147 kJ/mol. The energy liberated by adding an electron to chlorine is insufficient to override 
the energy required to remove an electron from sodium. This analysis, however, fails to con-
sider the force of attraction between the oppositely charged ions Na+ and Cl−, as expressed in 
terms of the energy released in the formation of solid NaCl from the separated gas-phase ions:

Cl–(g)

Chloride ion

+Na+(g)

Sodium ion Sodium chloride

NaCl(s)

This lattice energy is 787 kJ/mol and is more than sufficient to make the overall process 
for formation of sodium chloride from the elements exothermic. Forces between charged 
particles are called electrostatic, or Coulombic, and constitute an ionic bond when they 
are attractive.

Problem 1.5

What is the electron configuration of C+? Of C−? Does either one of these ions have a noble gas 
(closed-shell) electron configuration?

The SI (Système International 
d’Unités) unit of energy is the joule (J). 
An older unit is the calorie (cal). Many 
chemists still express energy changes 
in units of kilocalories per mole  
(1 kcal/mol = 4.184 kJ/mol).

Ionic bonding was proposed by the 
German physicist Walther Kossel in 
1916 in order to explain the ability of 
substances such as molten sodium 
chloride to conduct an electric 
current. He was the son of Albrecht 
Kossel, winner of the 1910 Nobel Prize 
in Physiology or Medicine for early 
studies of nucleic acids.
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Ionic bonds are very common in inorganic compounds, but rare in organic ones. The 
ionization energy of carbon is too large and the electron affinity too small for carbon to realis-
tically form a C4+ or C4− ion. What kinds of bonds, then, link carbon to other elements in mil-
lions of organic compounds? Instead of losing or gaining electrons, carbon shares electrons 
with other elements (including other carbon atoms) to give what are called covalent bonds.

1.3  Covalent Bonds, Lewis Formulas, and the Octet Rule

The covalent, or shared electron pair, model of chemical bonding was first suggested by 
G. N. Lewis of the University of California in 1916. Lewis proposed that a sharing of two 
electrons by two hydrogen atoms permits each one to have a stable closed-shell electron 
configuration analogous to helium.

H

Two hydrogen atoms,
each with a single

electron

H

Hydrogen molecule:
covalent bonding by way of

a shared electron pair

H H

The amount of energy required to dissociate a hydrogen molecule H2 to two separate 
hydrogen atoms is its bond dissociation enthalpy. For H2 it is quite large, amounting 
to +435 kJ/mol (+104 kcal/mol). The main contributor to the strength of the covalent 
bond in H2 is the increased Coulombic force exerted on its two electrons. Each electron 
in H2 “feels” the attractive force of two nuclei, rather than one as it would in an isolated 
hydrogen atom.

Only the electrons in an atom’s valence shell are involved in covalent bonding. Fluo-
rine, for example, has nine electrons, but only seven are in its valence shell. Pairing a valence 
electron of one fluorine atom with one of a second fluorine gives a fluorine molecule (F2) in 
which each fluorine has eight valence electrons and an electron configuration equivalent to 
that of the noble gas neon. Shared electrons count toward satisfying the octet of both atoms.

Fluorine molecule:
covalent bonding by way of

a shared electron pair

F F

Two fluorine atoms, each
with seven electrons in

its valence shell

FF

The six valence electrons of each fluorine that are not involved in bonding comprise three 
unshared pairs.

Structural formulas such as those just shown for H2 and F2 where electrons are repre-
sented as dots are called Lewis formulas, or Lewis structures. It is usually more convenient 
to represent shared electron-pair bonds as lines and to sometimes omit electron pairs.

The Lewis model limits second-row elements (Li, Be, B, C, N, O, F, Ne) to a total 
of eight electrons (shared plus unshared) in their valence shells. Hydrogen is limited to 
two. Most of the elements that we’ll encounter in this text obey the octet rule: In forming 
compounds they gain, lose, or share electrons to achieve a stable electron configuration 
characterized by eight valence electrons. When the octet rule is satisfied for carbon, nitro-
gen, oxygen, and fluorine, each has an electron configuration analogous to the noble gas 
neon. The Lewis formulas of methane (CH4), ammonia (NH3), water (H2O), and hydrogen 
fluoride (HF) given in Table 1.2 illustrate the octet rule.

With four valence electrons, carbon normally forms four covalent bonds as shown in 
Table 1.2 for CH4. In addition to C ⎯ H bonds, most organic compounds contain covalent 
C ⎯ C bonds. Ethane (C2H6) is an example.

or

H
A

A
H

H
A

A
H

HOCOCOH
to write a
Lewis structure
for ethane

H
PR

PR
H

H
PR

PR
H

HTTCT TCTTH
Combine two
carbons and
six hydrogens

C HH C
H H

H H

Gilbert Newton Lewis has been called 
the greatest American chemist.

Unshared pairs are also called lone 
pairs.
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Problem 1.6

Write Lewis formulas, including unshared pairs, for each of the following. Carbon has four bonds 
in each compound.

	 (a)	 Propane (C3H8)	 (c)	 Methyl fluoride (CH3F)
	 (b)	 Methanol (CH4O)	 (d)	 Ethyl fluoride (C2H5F)

Sample Solution  (a) The Lewis formula of propane is analogous to that of ethane but the 
chain has three carbons instead of two.

Combine three carbons 
and eight hydrogens

to write a Lewis formula for propane

CC C

H H

H H H

H

H H CC C
H H

H H H

H
H H or C C C HH

H H H

HHH

The ten covalent bonds in the Lewis formula shown account for 20 valence electrons, which 
is the same as that calculated from the molecular formula (C3H8). The eight hydrogens of C3H8 
contribute 1 electron each and the three carbons 4 each, for a total of 20 (8 from the hydrogens 
and 12 from the carbons). Therefore, all the valence electrons are in covalent bonds; propane 
has no unshared pairs.

Lewis’s concept of shared electron pair bonds allows for four-electron double bonds 
and six-electron triple bonds. Ethylene (C2H4) has 12 valence electrons, which can be dis-
tributed as follows:

to writeCombine two carbons 
and four hydrogens TCT TCT 

H
PR

PR
H

H
PR

PR
H

C C
H H

H H

	 TABLE 1.2	 Lewis Formulas of Methane, Ammonia, Water,  
and Hydrogen Fluoride

 
 
 
Compound

 
 
 
Atom

 
Number of  
valence electrons 
in atom

Atom and sufficient  
number of  
hydrogen atoms to  
complete octet

Lewis formula

Dot Line

Methane Carbon 4 C
H

H
H

H

N H
H

H

O HH

FH

CC

H

H

H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC

H

H

H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC

H

H

H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

Ammonia Nitrogen 5

C
H

H
H

H

N H
H

H

O HH

FH

CC

H

H

H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC

H

H

H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC

H

H

H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

Water Oxygen 6

C
H

H
H

H

N H
H

H

O HH

FH

CC

H

H

H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC

H

H

H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC

H

H

H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH
Hydrogen 
fluoride

 
Fluorine

 
7

C
H

H
H

H

N H
H

H

O HH

FH

CC

H

H

H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC

H

H

H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC

H

H

H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH
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